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Abstract

Neuro-fuzzy systems have been in the focus of recent research as a solution to jointly exploit the main features of fuzzy logic systems and

neural networks. Within the application literature, neuro-fuzzy systems can be found as methods for function identi®cation. This approach is

supported by theorems that guarantee the possibility of representing arbitrary functions by fuzzy systems. However, due to the fact that real

data are often noisy, generation of accurate identi®ers is presented as an important problem. Within the Adaptive Resonance Theory (ART),

PROBART architecture has been proposed as a solution to this problem. After a detailed comparison of these architectures based on their

design principles, the FasArt and FasBack models are proposed. They are neuro-fuzzy identi®ers that offer a dual interpretation, as fuzzy

logic systems or neural networks. FasArt and FasBack can be trained on noisy data without need of change in their structure or data

preprocessing. In the simulation work, a comparative study is carried out on the performances of Fuzzy ARTMAP, PROBART, FasArt and

FasBack, focusing on prediction error and network complexity. Results show that FasArt and FasBack clearly enhance the performance of

other models in this important problem. q 2001 Elsevier Science Ltd. All rights reserved.
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Symbols used in mathematical formulas with a descrip-

tion of each symbol

I� (a, ac) Input vector, in complementary code

M Input vector dimension

N Number of used units in F2 layer

Wj� {wji} Weights in F2 layer for unit j

Cj� {cji} New center weights in FasArt for unit j

Wab
j � {wab

ji } Inter-ART map weights linking units j in

ARTa and i in ARTb

Y Output of the F2 layer

Xab Inter-ART map activation vector

hF Membership function for fuzzy set F

Tj Activation of unit j in Fuzzy ART

hRj
Activation/membership function of unit j in FasArt

h ji Activation contributed by variable i to unit j

a Choice parameter in Fuzzy ART

b Learning rate

b c Learning rate for Cj in FasArt

r Vigilance parameter

g Fuzzi®cation rate in FasArt

e Learning rate in FasBack

y Predicted output

d Desired output

e Error between predicted and desired output

p A parameter (Ca
j , Cb

j or Wab
j ) to be optimized in

FasBack

Superscripts and subscripts a, b or ab refer to ARTa, ARTb

and inter-ART, respectively.

1. Introduction

Fuzzy logic systems allow a knowledge representation

close to its linguistic description, thus having transparent

and easily identi®ed performance mechanisms. However,

their de®nition requires a complex process of knowledge

extraction in order to materialize knowledge as a set of

rules. On the other hand, the neural networks paradigm is

appropriate for building systems with learning capabilities
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derived from examples with numeric information. Within

their effort to study the relationship and complementarities

of both fuzzy logic and neural network systems, several

researchers have proposed neuro-fuzzy systems that seek

to combine the main characteristics of both areas. Informa-

tion in fuzzy logic systems can be described in symbolic

form, as rules associated with certain sets, while the infor-

mation in neural network weights cannot be easily

expressed in linguistic terms, so that humans may validate

them by inspection. At the same time, the self-organization

property of neural networks allows neuro-fuzzy systems to

be built through a learning process from numeric data.

Adaptive Resonance Theory (ART) has contributed

several neural architectures that can be applied to classi®ca-

tion problems, either in a non-supervised way through ART

1 (Carpenter & Grossberg, 1989) for binary patterns and

ART 2 (Carpenter & Grossberg, 1987; Carpenter, Grossberg

& Rosen, 1991a) for analogue patterns, or in supervised

problems through ARTMAP (Carpenter, Grossberg &

Reynolds, 1991e). The introduction of concepts from

fuzzy set theory, as formulated by Zadeh (1965, 1988)

yielded Fuzzy ART (Carpenter, Grossberg & Rosen,

1991c,d) and Fuzzy ARTMAP models (Carpenter, Gross-

berg, Markuzon, Reynolds & Rosen, 1992b), that can be

considered fuzzy versions of ART 1 and ARTMAP, respec-

tively. These models have been applied to diverse problems,

such as classi®cation of handwritten characters (Carpenter,

Grossberg & Iizuka, 1992a), speech (Carpenter & Govinda-

vajan, 1993), and radar signals (Rubin, 1995), prediction of

stay in hospitals (Goodman, Kaburlasos, Eubert, Carpenter

& Grossberg, 1994), or rule extraction from databases

(Carpenter & Tan, 1993). The properties of stability and

incremental learning of both types of models were studied

and proven in various research reports: in Georgiopoulos,

Heileman and Huang (1992) and Georgiopoulos, Huang and

Heileman (1994) for the initial ART models, and in Huang,

Georgiopoulos and Heileman (1995) and Georgiopoulos,

Fernlind, Bebis and Heileman (1996) for the neuro-fuzzy

versions. Additionally, we should point out that there exist

several hardware implementations of the basic ART

modules, using parallel architectures (Malkani & Vassilia-

dis, 1995), optoelectronics (Blume & Esener, 1995) or VLSI

systems (Serrano & Linares, 1996).

It can be easily observed from the above literature survey,

that original ART models have been principally applied in

classi®cation problems. If we focus now on function identi-

®cation problems, we can ®nd a new series of models that

are more or less based on the ART architectures, such as

MIN±MAX (Simpson, 1993), RFALCON (Lin & Lin,

1996), PROBART (Marriott & Harrison, 1995; Srinivasa,

1997), and ®nally FasArt (Cano, Dimitriadis, ArauÂzo &

Coronado, 1996a) and FasBack (Cano, Dimitriadis & Coro-

nado, 1997) architectures studied in this paper.

The presence of noise in training data degrades the

performance of ART based architectures (Williamson,

1996), causing category proliferation, especially in those

which make use of the winner-take-all mechanism (Carpen-

ter, Milenove & Noeske, 1998). Within the ART theory

there are models treating the noise problem, such as dART-

MAP (Carpenter et al., 1998) and PROBART (Marriott &

Harrison, 1995; Srinivasa, 1997), although only the latter

has been explicitly proposed as function identi®er.

The rest of this paper is organized as follows: Section 2

presents a brief description of the main features of the basic

Fuzzy ART and Fuzzy ARTMAP architectures, as well as

the FasArt and FasBack models under study. Section 3

focuses on the problem of learning when available patterns

are noisy to a certain degree. An evaluation of Fuzzy

ARTMAP is made, while PROBART architecture, espe-

cially designed for this problem (Marriott & Harrison,

1995; Srinivasa, 1997) is presented and its relative merits

summarized. FasArt and FasBack performances are studied

under the same experimental conditions, and a comparative

evaluation is presented. The ®nal section is devoted to a

discussion of the relative merits of FasArt and FasBack

models for this important problem.

2. Introduction to the ART-family architectures

2.1. Basic de®nitions of fuzzy set theory

Fuzzy set theory introduces an extension to the classical

concept of set, thus allowing treatment of vague informa-

tion. This extension offers the possibility to express in a

formal way linguistic assessments.

In order to clarify the contribution of FasArt and FasBack

neuro-fuzzy systems, with respect to Fuzzy ARTMAP

architecture, this section summarizes the basic de®nitions

in the fuzzy set theory as introduced by Zadeh (1965) in his

seminal paper, covering the formal de®nition of fuzzy

system and the operations that can be applied to them.

De®nition 1. Let U be a collection of points (objects), and

u a generic element in U. Then the universe U is represented

as:

U � {u}

De®nition 2. (Fuzzy set) A fuzzy set (class) F in U is

characterized by a membership function hF(u), u [ U, so

that for each u [ U the value hF(u) [ [0, 1] represent the

membership degree of u to F. Formally:

F � {�u;hF�u�� u [ U}j

This de®nition includes the classical de®nition of set (or

`crisp' set), for which a point should strictly belong or not

belong to a set, i.e. hF(u) [ {0, 1}.

De®nition 3. (Support of a Fuzzy Set) The support of a
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fuzzy set F is the `crisp' set SF given by:

SF � {u hF�u� . 0}j

De®nition 4. (Singleton) A fuzzy set is a singleton if its

support is only one point.

De®nition 5. (Complementary) The complementary of a

fuzzy set F is a new fuzzy set �F with membership function

given by:

h �F � 1 2 hF�u�;u [ U

The de®nition of union and intersection operations shown

here has been proposed by Zadeh (1965), although different

de®nitions can be found in the literature.

De®nition 6. (Union) The union of two fuzzy sets F and G

is a new fuzzy set F _ G whose membership function is

given by:

hF_G�u� � max{hF�u�;hG�u�;u [ U

De®nition 7. (Intersection) The intersection of two fuzzy

sets F and g is a new fuzzy set F ^ G whose membership

function is given by:

hF^G � min{hF ;hG};u [ U

De®nition 8. (Cartesian product) Let F1, ¼, Fn be fuzzy

sets de®ned respectively in U1, ¼, Un then the Cartesian

product of F1, ¼, Fn is a new fuzzy set de®ned in the

product space U1 £ ¼ £ Un, with membership function:

hF1£¼£Fn
� hp

F1
¼phFn

where * represents a t-norm.

Usually one of the following t-norms is selected for the

implementation of the Cartesian product:

Fuzzy intersection: u*v�min(u, v)

Algebraic product: u*v� uv

Drastic product: u*v�max(0, u 1 v 2 1)

De®nition 9. (Fuzzy relation) An n-ary fuzzy relation is a

fuzzy set R in the product space U1 £ U2 £ ¼ £ Un, with

membership function:

hR�u1;¼; un�
where ui [ Ui, i� 1, ¼, n.

From this de®nition, we can de®ne rules of the form:

IF u1 IS F1 AND ¼ AND un IS Fn

where Fi is a fuzzy set de®ned in Ui, i� 1, ¼, n by imple-

menting the AND by a t-norm.

De®nition 10. (Composition) Given two binary fuzzy

relations in U, R and S, its composition, denoted by R Ã S,

is a fuzzy relation in U with membership function:

hR^S�u; v� � sup
w

{hR�u; v�phS�w; v�}

De®nition 11. (Composition inference rule) given a fuzzy

relation R in U £ V, and a fuzzy set F in U, the fuzzy set

induced by F in V through the fuzzy relation R is given by:

G � F ^R

2.2. The basic unsupervised learning Fuzzy ART model

Among the different neural architectures that can be

found in the literature, within the ART several models

have been proposed with a biological inspiration re¯ected

both in structure and functionality. Most of these models

have been devoted to the problems of unsupervised clus-

tering and supervised classi®cation, as in the case of

ART 1, ART 2, ART 3 and ARTMAP. Moreover, with

the aim to introduce fuzzy logic concepts into them,

Fuzzy ART and Fuzzy ARTMAP models have been

proposed, which keep the main features of ART and

ARTMAP, while making use of the new possibilities

provided by fuzzy set theory.

The basic change of Fuzzy ART with respect to ART 1

was the substitution of the logic operators of union and

intersection of crisp sets by the corresponding operators of

fuzzy sets, as shown in Table 1. This change allowed Fuzzy

ART to work not only with binary input patterns, but also

with analogue input vectors, whose components take values

in the range [0, 1].

Due to its general structure, Fuzzy ART keeps the basic

characteristics of the ART family models, that make them

especially attractive:

² Comparison between new inputs and already stored

prototypes

² State of resonance that guarantees compliance to the

stability±plasticity dilemma (Carpenter & Grossberg,

1989)

² Parallel search with signi®cantly reduced training and

performance time requirements

² Self-organization and class formation
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Table 1

Comparisons between ART 1 and Fuzzy ART operators

ART 1 (binary) Fuzzy ART (analogue)

> � logic AND ^ � fuzzy AND (MIN)

< � logic OR _ � fuzzy OR (MAX)



As we can observe in Fig. 1, Fuzzy ART can be character-

ized as a recurrent multilevel neural network, composed of

three unit levels, namely F0, F1 and F2. Units in level F0

serve as a storage site of the input pattern employing

complementary code, as de®ned by:

I � �a; ac� � �a1;¼; aM; ac
1;¼; ac

M� �1�
where ac

i � 1 2 ai. Activity in level F0 is transmitted to level

F1, and in the next step to level F2 through vectors of adap-

tive weights Wj associated with each unit j in level F2. The

activation of each F2 unit j is calculated as:

Tj �
uI ^ Wju
a1uWju

�2�

where a is a choice parameter.

In the competitive ®eld of F2, only the unit J with the highest

activation, i.e. TJ � max{Tj : j � 1;¼;N} survives. If we

consider that the prototype of each category j is represented

by its associated weight vector Wj, then this mechanism can be

seen as ®nding the category that best matches an input pattern.

This process of matching evaluation ®res a reset signal, if:

uI ^ Wju
uIu

, r �3�

where r is a vigilance parameter.

In the above case, matching is considered insuf®cient and

therefore TJ takes a new value of 21. Then a new cycle

begins that seeks a new winner unit. On the contrary, if:

uI ^ Wju
uIu

$ r �4�

matching is suf®cient and unit J modi®es its associated

weights, according to the following learning law:

W�new�
J � b�I ^ W�old�

J �1 �1 2 b�W�old�
J �5�

Based on the previous description of Fuzzy ART perfor-

mance, we can state that it is a self-organizing, non super-

vised system. We should emphasize the importance of the

vigilance parameter 0 # r # 1, that allows us to adequately

tune classi®cation, creating coarse (r ! ) or ®ne categories

(r . ).

2.3. Supervised learning with Fuzzy ARTMAP

As already mentioned in the introductory section,

ARTMAP was proposed as the ®rst model of the ART

family that allows supervised learning. Fuzzy ARTMAP,

ARTMAP's fuzzy counterpart, is composed of two Fuzzy

ART modules and an associative memory, called inter-ART

map, as re¯ected in Fig. 2. Both models follow the same

performance mechanisms. During the learning phase, an

input pattern is presented at ARTa, while another vector

(typically a label), that should be associated with the

input, is presented at ARTb. During the test or prediction

phase, a pattern is presented at ARTa, that through inter-

ART map activates a unit in ARTb, whose weights corre-

spond to the predicted output.

If we take a deeper look at Fuzzy ARTMAP's perfor-

mance, we can see that the same categorization process

occurs, when a certain pattern is presented in any of the

Fuzzy ART modules. Thus, in level F2 of Fuzzy ARTa

and ARTb, we obtain two vectors, Ya and Yb, that re¯ect

the activation state of level F2 units, where yi� 1 if unit i is

activated and 0 otherwise. Based on these vectors we can

de®ne the activation state of inter-ART map as:

Xab �

Yb ^ Wab
J if unit J of Fa

2 is active and Fb
2 is active

Wab
J if node J of Fa

2 is active and Fb
2 is not active

Yb if Fa
2 is not active and Fb

2 is active

0 if neither Fa
2 nor Fb

2 are active

8>>>>><>>>>>:
�6�

During the learning phase, a new mechanism of inter-ART

reset controls the formation of relations between categories

in ARTa and ARTb, using a new inter-ART vigilance para-

meter r ab. An inter-ART reset signal is ®red when:

uXabu , rabuYbu �7�
i.e. in this case we consider that the relation is not adequate,

and the inter-ART reset signal deactivates the active node in

level F2 of ARTa. At the same time, the vigilance parameter
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Fig. 1. Diagram of Fuzzy ART architecture. Layer F0 performs comple-

mentary code. Layer F1 propagates activation by bottom-up and top-down

weights between F0 and F2, where a category choice is made using a

winner-take-all mechanism.



r a is increased to a new value of:

ra � uIa ^ Wa
Ju

uIau
�8�

A new cycle of classi®cation is then started in ARTa, until

the criterion imposed by the inter-ART vigilance parameter

r ab is ful®lled. In that case, learning of inter-ART map

weights takes place using the law of Wab
J � Xab.

2.4. FasArt: a new neuro-fuzzy model

The structure of Fuzzy ARTMAP, in which a map ®eld

relates categories generated in the input and output spaces

by the ARTa and ARTb modules, permits its prediction

performance to be seen as a rule based inference engine

(Carpenter & Tan, 1993, 1995). These rules are constructed

from the ARTa and ARTb category weights, and can be put

in the following form (Carpenter & Tan, 1993):

IF Ia IS Aj THEN Ib IS Bk

that in turn can be decomposed into:

IF �Ia
1 IS Aj1� AND ¼ AND �Ia

n IS Ajn�
THEN �Ib

1 IS Bk1� AND ¼ AND �Ib
n IS Bkn�

For this interpretation to be consistent, A1, ¼, AM and B1, ¼,

BM must be fuzzy sets in the universes where vectors Ia and

Ib are de®ned. If these spaces are multidimensional the

fuzzy sets must be decomposable, according to:

Ai � Ai1 £ ¼ £ Ain

Bi � Bi1 £ ¼ £ Bin

Therefore, in order to interpret Fuzzy ARTMAP as a fuzzy

logic system, categories should be formally de®ned as fuzzy

sets. This approach requires the de®nition of their member-

ship functions and some expressions that describe the

prediction performance as in a fuzzy logic system. This

cannot be achieved with the original Fuzzy ART modules,

although the Boolean logic operators in ART 1 are replaced

by fuzzy logic operators, since there is not an explicit de®-

nition of the fuzzy sets on which they act.

FasArt model (Cano et al., 1996a; Sainz, Dimitriadis,

Cano, GoÂmez & Parrado, 2000) is proposed with the aim

to preserve ARTMAP general architecture, while permitting

its interpretation as a fuzzy logic system. This is achieved by

the introduction of an equivalence between activation func-

tion of a unit and a membership function to the fuzzy set

de®ned by that unit. This activation-membership function

hRj
(Tj in ART terminology) for each unit j, is de®ned

according to the following expression:

hRj
�
YM
i�1

hji�Ii� �9�

This equation corresponds to the evaluation of the antece-

dent of a fuzzy rule set using the algebraic product as a t-

norm to evaluate the Cartesian product (see Section 2.1).

The algebraic product has been selected to implement the t-

norm as in other neuro-fuzzy systems (Jang, 1993; Wang,

1994). In addition, it has the property of its derivability,

which will allow in Section 2.6 to enhance learning through

mathematical minimization of prediction error.

Therefore, during the prediction stage, the activation of a

unit k in Fb
2 is induced by rules such as

IF I IS Rj; THEN Y IS Rk
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Fig. 2. Diagram of Fuzzy ARTMAP architecture. Fuzzy ARTa performs a partitioning of the input space, while Fuzzy ARTb does so on the output space. The

inter-ART map, or layer Fab, relates layers Fa
2 and Fb

2. To ensure that correct relations are learnt, inter-ART reset may be ®red during training, modifying r a

during one presentation.



that can in turn be decomposed into:

IF �I1 IS Rj1� AND ¼ AND �In IS Rjn�
THEN �y1 IS Rk1� AND ¼ AND �yn IS Rkn�
where vector I is the input vector, and R are fuzzy sets

associated with units in ®elds Fa
2 and Fb

2. Each fuzzy set

Rji is de®ned by:

Rji � {�Ii;hji�Ii��uIi [ Ui}

where h ji is given by (see Fig. 3):

hij�Ii� �
max 0;

g�Ii 2 wji�1 1

g�eji 2 wji�1 1

 !
if Ii # cji

max 0;
g�1 2 Ii 2 wc

ji�1 1

g�1 2 cji 2 wc
ji�1 1

 !
if Ii . cji

8>>>><>>>>:
�10�

where wji, wc
ji and cji are weights associated with unit j in F2.

Triangular functions have been selected for their compu-

tational simplicity, although others such as Gaussians and

bell shaped could have been applied. For triangular func-

tions, if training data represent closely the underlying data

distribution, the fuzzy sets centers have also a statistical

meaning and performance can be enhanced. Other

approaches such as trapezoidal (or plateau), have been

used in Abe & Lan (1995), Salzberg (1991) and Simpson

(1993), but a problem may arise if a point produces maximal

membership to several categories, and, thus, complex algo-

rithms must be used to avoid class overlapping.

The new design parameter g determines the width of the

support of the fuzzy set. Then an increase in g generates sets

with a wider support, i.e. with an increased generalization

capability, while a decrease in g reduces the support and

then the performance of that unit can be considered less

fuzzy.

We can also observe that FasArt introduces a new weight

vector, Cj, associated with each unit j of the F2 level. The

learning law for this new set of weights is:

c�new�
ji � bcIi 1 �1 2 bc�c�old�

ji �11�
where b c is a learning rate. FasArt keeps the learning law

for Wj from Fuzzy ART, as well as the reset, inter-ART

reset and match tracking mechanisms. Therefore, FasArt

preserves some of the main features of ARTMAP architec-

tures, in particular stability and compliance to the stability±

plasticity dilemma, and, thus, FasArt is suitable for incre-

mental learning.

The interpretation of FasArt as a fuzzy logic system

allows us to use a defuzzi®cation method in order to calcu-

late the output. In this case, we employed a defuzzi®cation

method based on the average of fuzzy sets' centers (Wang,

1994). Therefore, when an input I � �I1;¼; IMa � is

presented to FasArt in the test phase, the output is calculated

by:

ym�I� �

XNb

k�1

XNb

j�1

cb
kmwab

jkh
a
Rj
�I�

XNb

k�1

XNb

j�1

wab
jk h

a
Rj
�I�

�12�

where ckm is the point where hb
R1

is maximum in dimension

m.

In summary, it can be established that FasArt, during the

prediction stage, is equivalent to a fuzzy logic system with

the following speci®cations:

Fuzzi®cation by single point

Inference by product

Defuzzi®cation by average of fuzzy sets centers

Several works in the literature study the application of fuzzy

logic systems to function approximation (Buckley, 1992;

Castro, 1995; Castro & Delgado, 1996; Kosko, 1992). In

particular, in Castro (1995) the following theorem is given:

Theorem 1. (Approximation theorem) Let f : U # R!
R be a continuous function de®ned on compact U. If I(a,

0)� 0 if a ± 0 (an R-implication or t-norm implication, for

example), then for any e . 0 there exists a Se [ S1, such

that sup{u f �x�2 Se�x�u=x [ U} # e; where S1 is a family of

fuzzy logic systems that include the systems characterized

by product inferencing and single point defuzzi®cation

based on average of fuzzy sets centers.

Since FasArt is a fuzzy logic system compliant with the

features required for the validity of the approximation theo-

rem, we can conclude as a corollary, that it is possible for

FasArt to uniformly approximate any continuous function f,

de®ned over the compact U; f : U # RM ! V # R:

These properties allowed FasArt to be applied with

success in pattern recognition problems, such as handwrit-

ten recognition (GoÂmez, Gago, Dimitriadis, Cano & Coro-

nado, 1998a) and document analysis (Sainz et al., 2000),
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Fig. 3. The new activation/membership function of FasArt, given by Eq.

(10), where wji, wc
ji and cji are weights associated with unit j and feature i.

Parameter g permits increase of the fuzziness of the set, and determines the

range of unknown patterns that may be learnt.



and in nonlinear system identi®cation (Cano, Dimitriadis,

ArauÂzo, Abajo & Coronado, 1996c; Cano et al., 1996a), as

well as for the automatic construction of fuzzy controllers

for the complex biochemical process of penicillin produc-

tion (ArauÂzo et al., 1999; Cano, Dimitriadis, ArauÂzo, Abajo

& Coronado, 1996b; GoÂmez, Cano, ArauÂzo, Dimitriadis &

Coronado, 1998b) and for the traf®c control over an ATM

network (Custodio, TascoÂn, Merino & Dimitriadis, 1999).

2.5. FasArt algorithm

This section presents FasArt algorithm in a comprehensive

step-by-step format. We separate the training and testing

stages, although incremental learning performance can be

achieved, by allowing FasArt weights to be updated according

to the learning laws during the testing stage. The newly intro-

duced activation/membership function is used for calculating

the activity of each neuron both in the training and testing

stages. However, in the training stage a winner-takes-all

(WTA) mechanism is applied so that only one category is

allowed to learn. On the contrary, in the prediction stage all

active units in Fa
2 can contribute to the output through the inter-

ART weights, as re¯ected by the defuzzi®cation function,

since FasArt can be seen as a fuzzy logic system during this

stage.

2.5.1. FasArt training

During FasArt training, input pairs (a1, b1), (a2, b2), ¼,

(an, bn)¼ are presented. Prior to training, there are not

committed units or relations stored in the inter-ART map.

Then for each training pair:

Step 1ÐCalculation of complementary code: vector Ia

is formed by

Ia � �a; ac� � �a1;¼; aM; ac
1;¼; ac

M�

Similarly vector Ib is formed from b.

Step 2ÐCalculation of activation in Fa
2 and Fb

2: for

each unit j in Fa
2, its activation hRj

is given by

hRj
�
YM
i�1

hji�Ia
i �

where function h ji is de®ned by:

hji�Ii� �
max 0;

ga�Ia
i 2 wa

ji�1 1

ga�ca
ji 2 wa

ji�1 1

 !
if Ia

i # ca
ji

max 0;
ga�1 2 Ia

i 2 wca
ji �1 1

ga�1 2 ca
ji 2 wca

ji �1 1

 !
if Ia

i . ca
ji

8>>>><>>>>:
Activity in Fb

2 units is computed in a similar way.

Step 3aÐSelect winner units in Fa
2: a WTA mechanism

is applied at the Fa
2 layer to select the winner node J,

which is that of maximal activation, i.e. hRJ
� maxj hRj

:

If all units are inhibited, a new unit is committed.

Step 3bÐSelect winter units in Fb
2: the same process is

independently carried out in Fb
2 to ®nd winner K. The

order of steps 3a and 3b is unimportant (ideally, they

could be carried out in parallel in a hardware implemen-

tation).

Step 4aÐReset evaluation in Fa
2: for the winner J, if

uIa ^ Wa
Ju

uIau
, ra

the reset occurs. Unit J is inhibited for the rest of this

presentation �hRJ
� 21�: Go again to Step 3a.

Step 4bÐReset evaluation in Fb
2: the same process is

carried out in Fb
2. If reset occurs, go to Step 3b.

Step 5ÐEvaluate inter-ART matching: the inter-ART

reset occurs if

wab
JK ± 1

which means that unit J in Fa
2 does not predict K in Fb

2. If

inter-ART reset is ®red, unit J in Fa
2 is inhibited, and r a is

raised temporarily by

ra � uIa ^ Wa
Ju

uIau

and a new unit is selected (go to Step 3a, but Step 3b is

not performed again).

Step 6ÐLearning: learning is carried out. In each unsu-

pervised module, learning follows the general laws:

Wa�new�
J � ba�Ia ^ Wa�old�

J �1 �1 2 ba�Wa�old�
J

Ca�new�
J � bc

aIa 1 �1 2 bc
a�Ca�old�

J

Wb�new�
K � b�Ib ^ Wb�old�

K �1 �1 2 bb�Wb�old�
K

Cb�new�
K � bc

bIb 1 �1 2 bc
b�Cb�old�

K

If unit J in ARTa is newly committed, fast learning is

performed (i.e. b a� b c
a � 1). The same holds for unit K

in ARTb.

The inter-ART map is modi®ed, so that wab
JK� 1, and all

other wJk� 0, for k� 1, ¼, M, k ± K.

2.5.2. FasArt testing

During the prediction stage, FasArt can be seen as a fuzzy

logic system. It receives test patterns a1, a2, ¼, an,¼ to

which FasArt must associate predicted outputs. For each

input pattern:

Step 1ÐCalculation of complementary code: input
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vector Ia is calculated from a, as shown in training, step 1.

Step 2ÐCalculation of activation in Fa
2: the activation

hRk
is calculated as described during training, step 2. This

can be interpreted as ®nding the fuzzy membership

degree of the input pattern to the different fuzzy sets

stored as antecedents in the rule base.

Step 3ÐInference: ®nd for each of the active units j in

Fa
2 its corresponding unit in Fb

2 through the inter-ART

map. This can be seen as applying the compositional

rule of inference (see De®nition 11, in Section 2.1).

This step outputs several fuzzy sets in the output space,

de®ned by the weights of Fb
2 units, and the membership

degree produced by the input pattern in the antecedent of

their rules. Two approaches can be followed to obtain the

®nal output (Lee, 1990).

Step 4ÐDefuzzi®cation: for FasArt the defuzzi®cation

has been calculated as the average of fuzzy sets centers, as

given by

ym�I� �

XNb

k�1

XNb

j�1

cb
kmwab

jk h
a
Rj
�I�

XNb

k�1

XNb

j�1

wab
jk h

a
Rj
�I�

Then the output is a real value in the output space. This is

the approach followed in this paper.

Step 4 0ÐFuzzy labeling: if the output fuzzy sets can be

labeled with linguistic variables (e.g. cold, warm, hot),

we may be interested in retaining to which degree these

fuzzy sets were inferred, instead of ®nding a crisp output.

This approach could be followed to apply FasArt for

pattern recognition.

2.6. Enhancing performance with prediction error

minimization with FasBack

During our experimental studies with FasArt, it was

observed that the network complexity, expressed in terms

of number of units, was rather high for a given prediction

error. Therefore, we proposed the FasBack neuro-fuzzy

system in order to reduce system complexity, while having

a guarantee of the same performance, or equivalently to

enhance performance with the same system complexity.

The new signi®cant element of FasBack refers to learning

guided by prediction error minimization, besides the basic

mechanism of learning by pattern matching that is

employed in FasArt and in all previous models of the

ART family. Thus, the new objective of FasBack is the

mathematic minimization of the prediction error:

e � y 2 d �13�
where y denotes the system output and d the desired output.

The corresponding error index that has to be minimized is

given by the following expression:

I � 1

2

X
e2

i � 1

2

X
�yi 2 di�2 �14�

Then, our goal consists in choosing the appropriate

system parameters that minimize the above error

index. We can easily observe that we face an optimiza-

tion problem of quadratic indices for nonlinear systems,

that can be tackled with any of the methods proposed in

the related technical literature. The gradient descent

method has been selected, in which parameters are

modi®ed in the direction indicated by the derivative

of the error index with respect to the parameter vector

(Wang, 1994), that is:

p�k� � p�k 2 1�2 e
2ep

2p

����
k21

�15�

where p(k) denotes the parameter vector with respect to

which we optimize at instant k, 0 # e # 1 is a scalar

that represents learning rate and ep is the prediction

error given by the following expression:

ep � 1

2
�y 2 d�2 �16�

If we derive the above expression with respect to

system parameter vector p we obtain

2ep

2p
� �y 2 d� 2y

2p
�17�

Introducing (17) into (15), we obtain the following

learning law for the system parameters:

p�k� � p�k 2 1�2 e�y 2 d� 2y

2p

����
k21

�18�

There exist several alternatives for the parameter vector

to be optimized. The ®rst refers to p� (cb
jm), i.e. in this

case the optimization is made to the shape of the fuzzy

sets in ARTb, through their centers. The corresponding

expression is:

cb
jm�t 1 1� � cb

jm�t�2 e�ym 2 dm�
PNa

k�1

wab
kj hRk

�I�
PNb

l

PNa

k�1

wab
kl hRk

�I�
�19�

As a second option, the optimization can be applied to

p� (w*ab
ij ), i.e. the connections that form a rule. These

weights of inter-ART map w*ab
ij � wab

iJ correspond to a unique

unit J where wab
ij ± 0, as it was de®ned in FasArt. In this case,

the learning law is:

w
pab
ij �t 1 1� � w

pab
ij �t�1 e�ym 2 dm��ym 2 cb

jm�
hRi
�I�PNb

l�1

PNa

k�1

wab
kl hRk

�I�
�20�

Finally, the form of the input fuzzy sets in ARTa can be

J.M. Cano Izquierdo et al. / Neural Networks 14 (2001) 407±425414



optimized through their centers p� (ci
an), thus obtaining the

following learning law:

ca
in�t 1 1� � ca

in 1 e�ym 2 dm�
hRi
�I�

hin�In�
2hin�In�
2ca

in

XNb

l�1

wab
il �ym 2 clm�

XNb

l�1

XNa

k�1

wab
kl hRk

�I�

�21�

where:

2hin�xn�
2cin

�

2�g�xn 2 win�1 1�g
�g�cin 2 win�1 1�2 if win 2

1

g
, xn # cin

�g�1 2 xn 2 wc
in�1 1�g

�g�1 2 cin 2 wc
in�1 1�2 if cin , xn , 1 2 wc

in 1
1

g

0 otherwise

8>>>>><>>>>>:
�22�

It can be easily shown that if new elements are added to

the parameter vector, then the number of degrees of

freedom in the system is increased, and, therefore, further

reduction of prediction error is possible with the cost of

additional computational requirements. Thus, the best

results can be obtained with a parameter vector that

combines the aforementioned three alternatives, i.e. with

p� (cb
jm, w*ab

i , ca
jm) as shown in Cano et al. (1997). The

following remarks can be made about the global optimi-

zation process and the speci®c formulas.

1. Although learning equations were formulated as a

result of applying a mathematical optimization method,

we have seen that it is possible to have an interpreta-

tion in terms of `natural language'.

2. All previous formulas have no mathematical sense if

activation of all systems units is null, i.e. if hRk
�I� � 0

for every unit k. Therefore, prior to this error minimi-

zation learning law, another learning law should be

applied, that can guarantee a suf®cient spanning of

the input space by the unit weights. This step can be

performed by the usual pattern matching learning law

of FasArt. Then, for each input pattern a learning cycle

using the FasArt pattern matching algorithm is

performed ®rst, followed by a second cycle in which

system parameters are modi®ed according to the

previous prediction error minimization formulas.

3. Parameter variation is null for all units or relations

that are not active for a certain input vector, i.e. for

which hRk
�I� � 0. We then have a learning process

that affects only the relations (rules) activated by the

input vector. In other terms, we perform a piecewise

error minimization process instead of global minimi-

zation error, as in traditional multilevel perceptrons

with backpropagation learning. In our system, we

search for subvectors of the parameter vector, that

locally minimize prediction error for a certain varia-

tion of the input. This property implies that incre-

mental, on-line learning is still valid, as in previous

FasArt and Fuzzy ARTMAP architectures.

3. Learning with noisy patterns: performance and
comparative evaluation

New signi®cant problems appear when we deal with real-

world experimental data. Among them, we can emphasize

the presence of a certain degree of noise that is caused by

diverse sources, such as system perturbations or uncertain-

ties, in the measurement instrumentation.

The presence of noise in training data adds an important

problem, since it affects the generalization capability of the

neural architecture and forces modi®cations of the error

index to be optimized (Bishop, 1994). On the other hand,

fuzzy systems can be considered as appropriate candidates

for this type of problem, since they establish an imprecise

separation among classes. In this section, we present the

most signi®cant solutions that were proposed with respect

to learning from noisy patterns within ART family neuro-

fuzzy architectures.

Williamson (1996) claimed the following de®ciencies of

Fuzzy ARTMAP in handling the above problem:

Sensibility to noise: the inter-ART reset mechanism

produces category proliferation. Carpenter, Grossberg

and Reynolds (1995) propose the use of slow learning

as well as an a priori maximum number of categories,

and more recently the use of distributed learning in

dARTMAP (Carpenter et al., 1998) as a means to remedy

this problem.

Use of inadequate fuzzy categories: Fuzzy ARTMAP

uses fuzzy categories of hyperrectangular form, while

representations based on hyperspheres seem to be more

adequate to handle noisy patterns.

Three general strategies were proposed in order to solve

these initial de®ciencies of Fuzzy ARTMAP.

1. The learning law related to the modi®cation of weights in

inter-ART map should be modi®ed. Then, these weights

should tend to represent the relationship between cate-

gories in the two Fuzzy ART modules. In this sense,

ART-EMAP (Carpenter & Ross, 1995; Rubin, 1995)

incorporates slow learning of inter-ART map weights

and establishes that, when an a priori maximum number

of categories is reached in Fa
2, inter-ART reset mechan-

ism should not ®re again. Furthermore, an evidence accu-

mulation method can be used when a more dif®cult

classi®cation decision cannot be made. A similar meth-

odology is employed in PROBART (Marriott & Harri-

son, 1995; Srinivasa, 1997), where the inter-ART map

weights count the number of times that two categories

were associated.

J.M. Cano Izquierdo et al. / Neural Networks 14 (2001) 407±425 415



2. Fuzzy categories should be represented in an appropriate

way, according to data statistics, typically of Gaussian

nature. In this sense, Gaussian ARTMAP was proposed

(Williamson, 1996), following the general principles of

Gaussian (Firmin & Hamad, 1994) or radial basis func-

tion neural networks (Chen & Chen, 1995; Jokinen,

1992; Mulgrew, 1996; Osman & Fahmy, 1994; Roy,

Govil & Miranda, 1995).

3. Use of a distributed codi®cation (Carpenter et al., 1998)

which, as opposed to winner-takes-all mechanism, allows

several units to contribute to the output.

All previous models were applied in pattern classi®cation

problems, except PROBART that was also used for function

approximation. Since the main goal of this paper is to study

the relative merits of FasArt and FasBack in function

approximation problems with noisy learning patterns, it is

reasonable to include PROBART as a reference point for the

experimental study. In this sense, two performance indices

are considered, the prediction error (RMSE) and the number

of committed categories. Results for Fuzzy ARTMAP and

PROBART are taken from Marriott and Harrison (1995),

and FasArt parameters are tuned based on experience to

produce a similar result in one of the performance indices

in order to establish a fair comparison on the other index.

In addition, it is interesting to have a reference point in

some well-known statistical technique. In particular, we

have compared the neural systems to kernel smoothing

methods (Bickel & Rosenblatt, 1973).

3.1. Function approximation with FasArt and FasBack

In order to evaluate the capabilities of FasArt and

FasBack to approximate functions, when learning patterns

are noisy, let us use the function f(x)� 0.45(1 1 sin(2px)),

when a uniformly distributed additive noise e in the interval

[20.1, 0.1] is present in the learning patterns. Fig. 4 shows

the 500 learning patterns that were randomly generated in

x [ [0, 1].

Using the above learning patterns, both FasArt and

FasBack models were trained and tested with the following

design parameters: r a� 0.66, r b� 0.5, g a� g b� 10, b a

� b b� 1, and for FasBack e � 0.4. As previously

mentioned, these parameters have been selected for a fair

comparison to the other architectures. As can be seen from

Fig. 5, both models perform well in this problem, although

FasBack shows a major capability for generalization for the

same network complexity.

To assess the in¯uence of noise in the results of both

models, they were also trained with non-noisy patterns.

Furthermore, a widely accepted quantitative measure,

such as RMSE (Relative Mean Square Error), has been

used in order to draw valid conclusions. In the results,

shown in Table 2, it can be seen that FasBack is better

than FasArt in both cases for equivalent network complex-

ity. It is noteworthy that difference in performance (predic-

tion error) is not signi®cant when noise is incorporated into

the learning patterns. It can therefore be concluded that
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Fig. 4. Noisy patterns of the initial function to be approximated, given by f(x)� 0.45(1 1 sin(2px)), with additive noise from a uniformly distributed source in

the interval [20.1, 0.1].

Table 2

Summary of function approximation results using FasArt and FasBack with

noisy or non-noisy learning patterns

Model Presence of noise Number of rules RMSE

FasArt Yes 11 0.0455

FasBack Yes 11 0.0158

FasArt No 13 0.0336

FasBack No 15 0.0056



both models perform well when noise is present during the

learning phase, although this feature was not explicitly

taken into account during the design of these models.

Finally, it cannot be argued that FasBack is less sensible

to perturbations caused by the noisy learning patterns,

since it is signi®cantly better even in the case of non-

noisy learning patterns.

3.2. Experimental comparative performance study of Fuzzy

ARTMAP, PROBART, FasArt and FasBack

PROBART is the only ART model that has been

explicitly designed for and applied to the problem of learn-

ing using noisy patterns. It follows the same basic architec-

ture and algorithm as Fuzzy ARTMAP, with a modi®ed

activation function for the inter-ART map, where:

Xab �

Yb 1 Wab
J if unit J of Fa

2 is active and Fb
2 is active

Wab
J if node J of Fa

2 is active and Fb
2 is not active

Yb if Fa
2 is not active and Fb

2 is active

0 if neither Fa
2 nor Fb

2 are active

8>>>>><>>>>>:
�23�

Comparing it with Eq. (6), it can be seen that the only

difference consists in the replacement of fuzzy intersection

operator ^ by the sum operator 1. Learning in inter-ART

map is also performed with a fast learning law, i.e.

Wab�new�
J � Xab �24�
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Fig. 5. Performance of (a) FasArt and (b) FasBack in approximating a sinusoidal function, using noisy learning patterns, where real is plotted solid, and

predicted is dashed.



Therefore, weights in inter-ART map re¯ect the number

of times that a certain association has been activated due to a

new learning input pattern. According to the Hebbian prin-

ciples of learning, connections with more activation corre-

spond to those of a greater value of the weight.

In PROBART, the mechanism of inter-ART reset is not

used and, therefore, the vigilance parameter remains

constant, or equivalently, the size of categories in Fuzzy

ARTa is kept constant. Due to this fact, frequency of asso-

ciations between categories remains unchanged. In a similar

way, designers of PROBART do not use inter-ART vigi-

lance parameter rab, thus allowing one-to-many relations

among nodes in ARTa and ARTb, where weights (frequen-

cies) re¯ect the importance of each relation. Finally, a new

equation is proposed for calculating the output, that takes

into account the values of frequencies accumulated in the

inter-ART map weights:

mJm � 1

uWab
J u

XNb

n�1

enmwab
Jn ; m � 1;¼; 2Mb �25�

where m Jm is the predicted value for the m-th component of

the output vector associated with node J of ARTa, uWab
J u is

the total number of associations between nodes in ARTb

and node J in ARTa, e nm is the m-th component of the vector

associated with the n-th category in ARTb, and wab
Jn is the

frequency associated with the n-th category of ARTb and

node J of ARTa.

It can be concluded that the main difference between

PROBART and Fuzzy ARTMAP is the suppression of inter-

ART reset and the corresponding mechanism of match track-

ing. Then, in a PROBART architecture, classi®cation in ARTa

is performed in a totally unsupervised way, as in ARTb, as

opposed to Fuzzy ARTMAP, where generation of categories

in ARTa is guided by the equivalent process in ARTb.

Exception handling in PROBART is then included in the

general mechanism of re¯ecting the frequency of associa-

tions between categories in the inter-ART map weights,

since a low frequency indicates an exception. On the

contrary, in Fuzzy ARTMAP a contradiction between past

knowledge and a new input pattern generated a new cate-

gory for an exception. Although the mechanism adopted in

PROBART for exception handling avoids category prolif-

eration, it may produce undesired performance, especially

in classi®cation problems. There exist many cases, where

there are not many learning patterns corresponding to an

exception situation, that in turn may have a great importance

in test phase. For example, in the problem of poisonous

mushrooms described in Carpenter et al. (1991e), there

may be just a few exemplars of poisonous mushrooms

that may share several common features with a category

of edible mushrooms with many exemplars in the learning

set. If a totally unsupervised classi®cation is performed in

ARTa, as proposed in PROBART, it is possible that both

types of mushroom fall into the same class. Then, the

predicted value in the test phase will always correspond to

an edible mushroom, because of the greater percentage of

such mushrooms within this class. Inter-ART reset mechan-

ism solves the above problem, creating two categories, since

class formation in ARTa is guided by the supervision infor-

mation provided in ARTb.

In order to evaluate the relative performance of FasArt,

FasBack neuro-fuzzy systems and PROBART architecture,

a function approximation test proposed by Marriott and

Harrison (1995) is carried out. The function to be approxi-

mated is:

f �x� �

X7

k�1

sin�10kx�1 10

20
�26�

The range of test for f : R! R is f(x) [ [0.2295, 0.7705]

for an input domain of x [ [0, 1]. Noisy patterns are gener-

ated by adding Gaussian noise to the original patterns

according to:

yp � f �xp�1 0:02ep �27�
where e p is Gaussian noise e p , N(0, 1).

Following the methodology proposed in Marriott and

Harrison (1995), 1000 non-noisy learning patterns were

generated with randomly selected points x, that can be

observed in Fig. 6. Input and output vectors were normal-

ized to [0, 1] for all the architectures studied in this section.

FasArt and FasBack models were trained using the same

design parameters: r a� 0.5, r b� 0.9, g a� g b� 50, b aÐ

� b b� 1, and for FasBack e � 0.4. For the test phase,

another set of 1000 randomly generated patterns was

chosen. Fig. 7 shows the results, as well as the prediction

error for FasArt and FasBack. It can be easily seen that

identi®cation is very good in both cases and that error is

kept low and without apparent structure.

In Marriott and Harrison (1995) Fuzzy ARTMAP and

PROBART were tested for the same experiment and under

the same conditions, using the following design parameters:

a � 0.001, ra� 0.99, rb� 0.99, rab� 0.9. All these results

are collected in Table 3, where Na and Nb represent the

number of nodes, that were required at ARTa and ARTb,

and MAXE denotes the maximum value of the absolute

prediction error.

It can be easily appreciated in Table 3, that FasBack and

FasArt are clearly better than Fuzzy ARTMAP in the task of

approximating this function, since the index of quadratic

error RMSE is smaller, also with a considerably smaller
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Table 3

Comparison of results for the models under study when non-noisy learning

patterns were used in order to identify the benchmark function

Model Na Nb RMSE MAXE

ARTMAP 312 53 0.0074 0.01

PROBART 110 53 0.0169 0.0755

FasArt 130 29 0.0066 0.0425

FasBack 133 29 0.0035 0.0327



network complexity, measured as number of nodes. With

respect to PROBART, both FasArt and FasBack present

better error indices with an equivalent network complexity.

The second experiment, proposed in Marriott and Harri-

son (1995), deals with the same task but using noisy learn-

ing patterns. A new learning set of 1000 patterns was

generated, using Eqs. (26) and (27). Once learning was

performed with the data shown in Fig. 8, the test was carried

out using 1000 non-noisy patterns that were chosen

randomly.

Fig. 9 shows the predicted function, as well as the predic-

tion error, when FasArt and FasBack were used with the

same design parameters as in the previous experiment. An

easy qualitative conclusion can be drawn from this ®gure,

i.e. that FasArt and FasBack are capable of representing

such a bench-mark function, even when learning data are

corrupted. Such a property is especially important in real-

world applications of system identi®cation, where data

coming from sensors present a considerable noise level.

An identi®cation model that is insensitive to the presence

of noise in the learning phase is very useful since special

data preprocessing techniques can then be avoided.

Results for Fuzzy ARTMAP and PROBART in this

experiment are collected in Table 4 according to conditions

imposed in Marriott and Harrison (1995) and keeping the

same parameters: a , r a, r b and r ab. Error data that are

denoted by legend (L) refer to results obtained for the learn-

ing set. On the other hand, those denoted with legend (CL)

refer to results obtained when the test set coincided with the

learning set, but with the signi®cant difference that no Gaus-

sian noise was present, i.e. using Eq. (26) instead of Eq. (27)

for the output points. Thus, with this experiment, we may

®nd out the capabilities of the different models to `®lter out'

noise present in learning patterns. Finally, error data

denoted by legend (T ) refer to the normal test set.

Analyzing data in Table 4, it can be easily observed that

the presence of noise in the learning set of Fuzzy ARTMAP

produces a considerable increase of number of nodes Na in

ARTa (from 312 to 806). This is due to the fact that inter-

ART reset mechanism ®res incorrectly, since two points,

that should belong to the same category, are now part of

different categories because of the presence of noise.

To illustrate such behavior, consider two points x1 and x2

that belong to the same category in ARTa. When we

perform learning using non noisy patterns, their correspond-

ing points belong to the same category in ARTb, i.e.

y1� f(x1) and y2� f(x2) according to Carpenter et al.,

(1991c)should be separated by a distance R so that:

R # M�1 2 r� �28�
For this case M� 1 and R � u1 2 wi

2 2 wi
1u where w �

�wi
1;w

i
2� is the weight vector associated with class i to

which f(x1) and f(x2) belong. Then, for fast learning of non

noisy patterns:

uy1 2 y2u � u f �x1�2 f �x2�u # M�1 2 r� �29�
On the other hand, when using noisy patterns in the learning

set, the corresponding output points are now f(x1) 1 e 1 and

f(x2) 1 e 2, and therefore it is possible that the following

inequality be true:

uy1 2 y2u � u f �x1�1 e1 2 f �x2�2 e2u . M�1 2 r� �30�
In this case, y1 and y2 do not belong to the same category in

ARTb, and therefore corresponding points x1 and x2 cannot

be assigned to the same category in ARTa.

This fact can explain the considerable increase of categories

in ARTa, as compared with the small increase of nodes N_b in

ARTb (from 53 to 61), produced by the augmented range of

y(x) due to addition of noise. On the other hand, PROBART

does not present such a category proliferation problem (from
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Fig. 6. Non noisy patterns of the benchmark function to be approximated, given by Eq. (26) (Marriott & Harrison, 1995).



100 to 112 categories) due to the modi®cation in the inter-ART

reset mechanism. Performance in ARTb is similar to that of

Fuzzy ARTMAP, since both perform self-organizing learning.

As far as FasArt and FasBack results are concerned, they are

closer to those of Fuzzy ARTMAP, since the same inter-ART

reset mechanism and match tracking procedure are kept in

their design. However, the increase of nodes in ARTa and

ARTb is much smaller than that in Fuzzy ARTMAP, since

FasArt and FasBack can work with lower vigilance parameters

in order to obtain suf®cient category discrimination (ra� 0.5,

rb� 0.9, as compared with ra� rb� 0.99 in Fuzzy

ARTMAP).

The performance characteristics due to the presence of

noise in the learning patterns can also be analyzed from

Tables 3 and 4. In Fuzzy ARTMAP, error index RMS has

signi®cantly deteriorated (from 0.0074 to 0.0302), although

the number of categories increased. On the other hand, error

RMS(L) is much less for the learning set (0.0137), as

compared with both cases of test RMS(CL) and RMS(T)

(0.0302). It can be deduced that Fuzzy ARTMAP has

performed `overlearning', i.e. it over®tted learning data

and, therefore, it was not able to ®lter out noise and general-

ize for the new data of the test set. It can be argued that

Fuzzy ARTMAP has tried to learn noise besides signal

information. Therefore, it generated many categories that

contained contradictory information, since they were

mainly due to noise and not to signi®cant information of

input patterns.
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Fig. 7. Performance of (a) FasArt and (b) FasBack in approximating a benchmark function, using non noisy learning patterns. Top plot corresponds to the

identi®cation performed by the model, while bottom plot is the prediction error.



With respect to PROBART, error is higher for the case of

learning with noisy patterns (from 0.0168 to 0.0202), as

expected, but this increase is much smaller than that of

Fuzzy ARTMAP. Another signi®cant observation is that

error is higher in learning set error RMS(L)� 0.0322 than

in both test sets (RMS(CL)� 0.0189, RMS(T)� 0.0202). It

can then be deduced that PROBART is capable of ®ltering

out noise present in the learning set, and it can better learn

the basic signal that generated learning data. Finally, it is

apparent that both FasArt and FasBack produce much better

error indices in both test sets, enhancing results provided by

PROBART, with a cost of an increase in the number of

categories.

In order to test the validity of neural approaches, we can

compare them to other well-known statistical techniques. In

particular, kernel regression (Bickel & Rosenblatt, 1995) has

been used for the estimation of function given by Eq. (26).

We have used a bandwidth of 1% of the range of the input

variable, and quartic kernel functions. If non noisy observa-

tions are used for the regression kernels (Table 3),

RMS� 0.0049 and MAXE� 0.0483 are obtained. If noisy

observations are used, RMS(L)� 0.0197 and MAXE(L)�
0.0689; RMS(CL)� 0.0069 and MAXE(CL)� 0.0400;

RMS(T)� 0.0073 and MAXE(T)� 0.0375. These results

are comparable to those achieved by FasArt and FasBack,

while these neuro-fuzzy systems achieve code compression,

and feature several important properties such as fast incre-

mental learning, that make them suitable for on-line adaptive

applications. In addition, FasArt and FasBack also permit

interpretation of the acquired knowledge as fuzzy rules.

In Marriott and Harrison (1995) another experiment was

proposed in order to enhance error indices. In order to achieve

this objective, an increase in the number of learning patterns

(10,000 instead of 1000) was proposed, and the values of the

vigilance parameters were raised (ra� rb� 0.998). Obser-

ving the results shown in Table 5, it can be seen that the

number of categories increased, as compared with the

previous experiment. Comparing these results with those

obtained by FasBack in the previous experiment, it is clear

that our model achieves the same error indices with a much

lower number of categories and with much less learning

patterns.

An interesting design property of FasBack is that a smal-

ler number of rules is obtained by error-based learning,

because it can now work with lower vigilance parameters.

To test this, the initial learning set of 1000 noisy patterns

was used with the design parameters (r a� 0.5, r b� 0.9,

g a� g b� 50. Observing the results shown in Table 6, it

can be seen that a signi®cant reduction in the number of

nodes was achieved, while keeping the same magnitude of
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Table 4

Comparison of results for the models under study when noisy learning patterns were used in order to identify the benchmark function

Model Na Nb RMS(L) RMS(CL) RMS(T) MAXE(L) MAXE(CL) MAXE(T)

F. ARTMAP 806 61 0.0137 0.0302 0.0302 0.0878 0.0678 0.0679

PROBART 112 61 0.0322 0.0189 0.0202 0.1507 0.0769 0.0905

FasArt 275 30 0.0206 0.0099 0.0097 0.0716 0.0411 0.0427

FasBack 284 30 0.0198 0.0074 0.0078 0.0810 0.0364 0.0389

Fig. 8. Noisy patterns of the benchmark function to be approximated, given by Eq. (26) (Marriott & Harrison, 1995), where the output is corrupted by additive

Gaussian noise, as shown by Eq. (27).
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Table 5

Best effort results of PROBART for noisy learning patterns when using increased vigilance parameters and size of learning set

Model Na Nb RMS(L) RMS(CL) RMS(T) MAXE(L) MAXE(CL) MAXE(T)

PROBART 608 341 0.0276 0.0079 0.0084 0.0779 0.0219 0.0269

Table 6

Results obtained by FasBack with lower vigilance parameters and the initial learning set

Model Na Nb RMS(L) RMS(CL) RMS(T) MAXE(L) MAXE(CL) MAXE(T)

FasBack 88 15 0.0209 0.0096 0.0098 0.0795 0.0458 0.0481

Fig. 9. Performance of (a) FasArt and (b) FasBack in approximating a benchmark function, using noisy learning patterns. Top plot corresponds to the

identi®cation performed by the model, while bottom plot is the prediction error.



error indices. Then, smaller network complexity was

obtained for the same magnitude of error indices achieved

by PROBART, which was trained on a much larger number

of patterns.

The results achieved on these simple problems have been

validated in other application-oriented works. In GoÂmez et

al. (1998b) a highly nonlinear process, the penicillin

fermentation, was simulated and FasArt was satisfactorily

tested for biomass identi®cation using 6±8 input variables in

realistic conditions (noise and low sampling). In ArauÂzo,

GoÂmez, Cano, Coronado, LoÂpez & Collados (1999) and

GoÂmez, ArauÂzo, Cano, Dimitriadis, LoÂpez and LoÂpez

(1999) these results have been validated with data obtained

from a penicillin pilot plant.

4. Conclusions

Neuro-fuzzy systems are a feasible solution to the

problem of function identi®cation from numeric data. As

fuzzy logic systems, the performance of such systems can

be described with a fuzzy rule base and a fuzzy inferencing

engine. Furthermore, as neural networks, they provide

learning capabilities for the automatic generation of these

models. FasArt and FasBack are two architectures that

maintain this dual interpretation: fuzzy logic systems and

neural networks, due to the analogies between activation

and membership functions, as well as neural connection

and fuzzy rule.

FasArt architecture maintains the general structure of

ARTMAP, preserving its main features, and adding the

concept of fuzzy category. This is achieved by the de®nition

of membership function of a category as the activation func-

tion of the related neural unit. Thanks to this duality,

mechanisms from both ®elds can be applied in the same

model, such as neural learning or defuzzi®cation. Moreover,

theoretical results from fuzzy systems literature characterize

FasArt as a universal applicator. Besides learning by match-

ing, the introduction of learning guided by prediction error

minimization in FasBack architecture allows a reduction in

network complexity while maintaining performance indices

similar to those of FasArt.

Learning from noisy patterns is an important problem in the

identi®cation task, since real data are often corrupted by noise

due to sensor inaccuracy among other reasons. Architectures

within ART theory are highly sensible to this fact, since the

winner-takes-all mechanism yields category proliferation,

without enhancing prediction error. PROBART architecture

reduces this problem, but it makes important modi®cations in

ARTMAP structure, thus losing some of its main features.

Table 7 summarizes in a comparative fashion, the main

features of the two proposed architectures and those of

Fuzzy ARTMAP and PROBART. The proposed architec-

tures are equivalent during the test stage to a fuzzy system

with fuzzi®cation by single point, inference by product and

defuzzi®cation by average of fuzzy sets, while this duality

cannot be found in Fuzzy ARTMAP or PROBART. This is

achieved by the de®nition of a new activation/membership

function, as mentioned above. For the newly introduced

weights CJ learning rules are introduced, in addition to

those preserved from Fuzzy ARTMAP original algorithm.

In FasBack, additional learning rules are de®ned to ®ne-tune

weights in order to minimize prediction error.

The inter-ART map of FasArt architecture stores relations
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Table 7

Structural and algorithmic comparison between Fuzzy ARTMAP, PROBART, FasArt and FasBack

Item Fuzzy ARTMAP PROBART FasArt FasBack

Duality to fuzzy logic system No Yes

Inter-ART Competitive Probabilistic Competitive

Output prediction Competitive Distributed

Inter-ART reset Yes No Yes

Unit j, feature i associated weights wji, wc
ji wji, cji, wc

ji

Activation Tj �
uI ^ Wj u
a 1 uWju

hRj
�I� � QM

i�1 hji�Ii�

where

hji�Ii� �
max 0;

g�Ii 2 wji�1 1

g�cji 2 wji�1 1

 !
if Ii # cji

max 0;
g�1 2 Ii 2 wc

ji�1 1

g�1 2 cji 2 wc
ji�1 1

 !
if Ii . cji

8>>>><>>>>:

Learning laws (matching) W�new�
J � b�I ^ W�old�

J �1 �1 2 b�W�old�
J

± C�new�
J � bcI 1 �1 2 bc�C�old�

J

Learning laws (error minimization) ± p�k� � p�k 2 1�2 e�y 2 d� 2y

2p

��
k21

p�W, C



between Fa
2 and Fb

2 units. As well as for Fuzzy ARTMAP (in

most practical applications r ab� 1), each neuron in Fa
2 may

be linked to just one neuron in Fb
2. On the contrary,

PROBART's inter-ART map stores probabilistic relations,

so that a unit in Fa
2 may be linked to several units in Fb

2,

with different probabilities. Due to this fact, PROBART cate-

gorization of the input space is totally determined by ra, while

in Fuzzy ARTMAP, and FasArt and FasBack architectures,

an inter-ART reset mechanism allows performing supervised

learning.

In addition, we carried out experimental work on a

problem proposed by PROBART designers, proving FasArt

and FasBack capable of learning from noisy data. Results

have shown very good performance of FasArt and FasBack,

although they have not been speci®cally designed to cope

with this particular problem. It has been seen that both

FasArt and FasBack can learn from noisy data without

meaningful loss of precision or increase of network

complexity, as compared with results achieved when learn-

ing from clean data.

Acknowledgements

This research work was partially ®nancially supported by

the BRE2-CT94-0976 `PSYCHO' and ESPRIT 22416

`MONNET' projects of the European Union. The authors

would like to thank all researchers of the Neurotecno Insti-

tute for their contributions, and especially M.A. ArauÂzo

Bravo. The authors would like to thank the anonymous

reviewers for their interesting comments that helped to

improve the ®nal quality of the paper.

References

Abe, S., & Lan, M. -S. (1995). Fuzzy rule extraction directly from numer-

ical data for function approximation. IEEE Transactions on Systems,

Man and Cybernetics, 25 (1), 119±129.

ArauÂzo, M. J., GoÂmez, E., Cano, J. M., Coronado, J., LoÂpez, M.J., &

Collados, A. (1999). Control of the penicillin production with adaptive

IMC using fuzzy neural networks. In Proceedings of 14th World

Congress of IFAC (pp. 499±504). Beijing, vol. O.

Bickel, P., & Rosenblatt, M. (1973). On some global measures of the

deviations of density functions estimators. Annals of Statistics, 1,

1071±1095.

Bishop, C. (1994). Training with noise is equivalent to Tikhonov regular-

ization. Technical Report NCRG/4290, Neural Computing Research

Group, Aston Univesity.

Blume, M., & Esener, S. (1995). Optoelectronic fuzzy ARTMAP processor.

Optical Computing, 10, 213±215.

Buckley, J. (1992). Universal fuzzy controllers. Automatica, 28 (6), 1245±

1248.

Cano. J. M., Dimitriadis, Y. A., ArauÂzo, M. J., Abajo, F., & Coronado, J.

(1996b). A neuro-fuzzy architecture for automatic development of

fuzzy controllers. In Proceedings of Computational Engineering in

Systems Applications (pp. 1187±1192). Lille, vol. 1.

Cano, J. M., Dimitriadis, Y. A., ArauÂzo, M. J., Abajo, F., & Coronado, J.

(1996c). Fuzzy Adaptive System ART-based: theory and application to

identi®cation of biochemical systems. In Proceedings of Computational

Engineering in Systems Applications (pp. 918±923). Lille, vol. 1.

Cano, J. M., Dimitriadis, Y. A., ArauÂzo, M. J., & Coronado, J. (1996a).

FasArt: A new neuro-fuzzy architecture for incremental learning in

systems identi®cation. In Proceedings of 13th World Congress of

IFAC (pp. 133±138). San Francisco, vol. F.

Cano, J. M., Dimitriadis, Y. A., & Coronado, J. (1997). FasBack: Matching

error based learning for automatic generation of fuzzy logic systems. In

Proceedings of the sixth IEEE International Conference on Fuzzy

Systems (pp. 1561±1566). Barcelona, vol. 3.

Carpenter, G. & Govindavajan, K. (1993). Evaluation of speaker normal-

ization methods for vowel recognition using Fuzzy ARTMAP and k-

NN. Technical Report CAS/CNS-93-013, Boston University, Center for

Adaptive Systems and Department of Cognitive and Neural Systems.

Carpenter, G., & Grossberg, S. (1987). ART 2: Self-organization of stable

category recognition codes for analog input patterns. Applied Optics, 26

(23), 419±4920.

Carpenter, G. & Grossberg, S. (1989). Self-organizing neural network

architectures for real-time adaptive pattern recognition. In An introduc-

tion to neural and electronic networks (pp. 455±478). Springer Verlag.

Carpenter, G., & Ross, W. (1995). ART-EMAP: a neural network archi-

tecture for object recognition by evidence accumulation. IEEE Trans-

actions on Neural Networks, 6 (4), 805±818.

Carpenter, G. & Tan, A., Extraction, fuzzy ARTMAP, and medical data-

base. In Proceedings of the World Congress on Neural Networks. Port-

land, vol. 1.

Carpenter, G., & Tan, A. (1995). Rule extraction: from neural architecture

to symbolic representation. Connection Science, 7, 3±27.

Carpenter, G., Grossberg, S., & Iizuka, K. (1992a). Comparative perfor-

mance measures of fuzzy ARTMAP learned vector quantization and

back-propagation for handwritten character recognition. In Proceedings

of the International Joint Conference on Neural Networks (pp. 794±

799). Baltimore, vol. 1.

Carpenter, G., Grossberg, S., Markuzon, N., Reynolds, J., & Rosen, D.

(1992b). Fuzzy ARTMAP: a neural network architecture for incremen-

tal supervised learning of analog multidimensional maps. IEEE Trans-

actions on Neural Networks, 3 (4), 698±713.

Carpenter, G., Grossberg, S., & Reynolds, J. (1991e). ARTMAP: super-

vised real-time learning and classi®cation of nonstationary data by a

self-organizing neural network. Neural Networks, 4 (5), 565±588.

Carpenter, G., Grossberg, S., & Reynolds, J. (1995). A fuzzy ARTMAP

non-parametric probability estimator for nonstationary pattern recogni-

tion problems. IEEE Transactions on Neural Networks, 6, 1330±1336.

Carpenter, G., Grossberg, S., & Rosen, D. (1991a). ART 2-A: an adaptive

resonance algorithm for rapid category learning and recognition. Neural

Networks, 4, 493±504.

Carpenter, G., Grossberg, S., & Rosen, D. (1991c). Fuzzy ART, an adaptive

resonance algorithm for rapid, stable classi®cation of analog patterns. In

Proceedings of the International Joint Conference on Neural Networks

(pp. 411±416). Seattle, vol. 2.

Carpenter, G., Grossberg, S., & Rosen, D. (1991d). Fuzzy ART: fast stable

learning and categorization of analog patterns by an adaptive resonance

system. Neural Networks, 4, 759771.

Carpenter, G., Milenova, B., & Noeske, B. (1998). Distributed ARTMAP: a

neural network for fast distributed supervised learning. Neural

Networks, 11, 793±813.

Castro, J. (1995). Fuzzy logic controllers are universal approximators.

IEEE Transactions on Systems, Man, and Cybernetics, 25 (4), 629±635.

Castro, J., & Delgado, M. (1996). Fuzzy systems with defuzzi®cation are

universal approximators. IEEE Transactions on Systems, Man, and

CyberneticsÐPart B: Cybernetics, 26 (1), 149±152.

Chen, T., & Chen, H. (1995). Approximation capability to functions of

several variables, nonlinear functionals, and operators by radial basis

neural networks. IEEE Transactions on Neural Networks, 6 (4), 904±

910.

Custodio, J. J., TascoÂn, M., Merino, M., & Dimitriadis, Y. A. (1999). In

Proceedings of the International Conference on Arti®cial Neural

Networks (pp. 964±969). Edinburgh.

Firmin, C. & Hamad, D. (1994). Gaussian based neural networks applied to

J.M. Cano Izquierdo et al. / Neural Networks 14 (2001) 407±425424



pattern classi®cation and multivariant probability density estimation. In

Proceedings of the second IEEE International Conference on Fuzzy

Systems. San Francisco.

Georgiopoulos, M., Fernlund, H., Bebis, G., & Heileman, G. (1996). Order

of search in Fuzzy ART and Fuzzy ARTMAP: effect of the choice

parameter. Neural Networks, 9 (9), 1541±1559.

Georgiopoulos, M., Heileman, G., & Huang, J. (1992). The N-N-N

conjuncture in ART 1. Neural Networks, 5, 745±753.

Georgiopoulos, M., Huang, J., & Heileman, G. (1994). Properties of learn-

ing in ARTMAP. Neural Networks, 7 (3), 495±506.

GoÂmez, E., ArauÂzo, M. J., Cano, J. M., Dimitriadis, Y. A. LoÂpez, J., &

LoÂpez, M. J. (1999). Control of the penicillin production using fuzzy

neural networks. In Proceedings of IEEE International Conference on

Systems, Man, and Cybernetics (pp. 446±450). Tokyo, vol. 6.

GoÂmez, E., Cano, J. M., ArauÂzo, M. J., Dimitriadis, Y. A., & Coronado, J.

(1998b). Adaptive IMC using fuzzy neural networks for the control of

non-linear systems. In Proceedings of Conference on Integration in

Manufacturing (pp. 792±801). GoÈteborg.

GoÂmez, E., Gago, J. A., Dimitriadis, Y. A., Cano, J. M., & Coronado, J.

(1998aa). Experimental study of a novel neuro-fuzzy system for on-line

handwritten UNIPEN digit recognition. Pattern Recognition Letters, 19

(3), 357±364.

Goodman, P., Kaburlasos, V., Eubert, D., Carpenter, G., & Grossberg, S.

(1994). Fuzzy ARTMAP neural network compared to linear discrimi-

nant analysis prediction of the length of hospital stay in patients with

pneumonia. In Fuzzy logic technology and applications. IEEE Press.

Huang, J., Georgiopoulos, M., & Heileman, G. (1995). Fuzzy ART

properties. Neural Networks, 8 (2), 203±212.

Jang, J. -S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference

system. IEEE Transactions on Systems, Man, and Cybernetics, 23

(3), 665±685.

Jokinen, P. (1992). On the relation between radial basis function networks

and fuzzy systems. In Proceedings of the International Joint Confer-

ence on Neural Networks. Baltimore.

Kosko, B. (1992). Fuzzy function approximation. In Proceedings of the

International Joint Conference on Neural Networks. Baltimore.

Lee, C. (1990). Fuzzy logic in control systems: fuzzy logic controller.

Part II. IEEE Transactions on Systems, Man, and Cybernetics, 20

(2), 419±435.

Lin, C., & Lin, C. (1996). Reinforcement learning for an ART-based fuzzy

adaptive learning control network. IEEE Transactions on Neural

Networks, 7 (3), 709±730.

Malkani, A., & Vassiliadis, A. (1995). Parallel implementation of the Fuzzy

ARTMAP neural network paradigm on a hypercube. Expert Systems, 12

(1), 39±53.

Marriott, S., & Harrison, R. (1995). A modi®ed Fuzzy ARTMAP architec-

ture for the approximation of noisy mappings. Neural Networks, 8 (4),

619±641.

Mulgrew, B. (1996). Applying radial basis functions. IEEE Signal Proces-

sing Magazine, 13 (2), 50±65.

Osman, H., & Fahmy, M. (1994). Probabilistic winner-take-all algorithm for

radial-basis-function neural classi®ers. Neural Computation, 6, 927±943.

Roy, A., Govil, S., & Miranda, R. (1995). An algorithm to generate radial

basis functions (RBF)-like nets for classi®cation problems. Neural

Networks, 6 (2), 179±201.

Rubin, M. (1995). Application of Fuzzy ARTMAP and ART-EMAP to

automatic target recognition using radar range pro®les. Neural

Networks, 8 (718), 1109±1116.

Sainz, G. I., Dimitriadis, Y. A., Cano, J. M., GoÂmez, E., & Parrado, E.

(2000). ART based model set for pattern recognition: FasArt family. In

H. Bunke, & A. Kandel (Eds.), Neuro-fuzzy pattern recognition. World

Scienti®c Publ. Co.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine

Learning, 6, 251±276.

Serrano Gotarredona, T., & Linares Barranco, B. (1996). A modi®ed ART1

algorithm more suitable for VLSI implementations. Neural Networks, 9

(6), 1025±1044.

Simpson, P. (1993). Fuzzy min±max neural network for function approx-

imation. In Proceedings of the International Conference on Neural

Networks. San Francisco.

Srinivasa, N. (1997). Learning and generalization of noisy mapping using a

modi®ed PROBART neural network. IEEE Transactions on Signal

Processing, 45 (10), 2533±2550.

Wang, L. (1994). Adaptive fuzzy systems and control, New Jersey: Prentice

Hall.

Williamson, J. (1996). Gaussian ARTMAP: a neural network for fast incre-

mental learning of noisy multidimensional maps. Neural Networks, 9

(5), 881±897.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338±353.

Zadeh, L. (1988). Fuzzy logic. Computer, 21 (4), 83±93.

J.M. Cano Izquierdo et al. / Neural Networks 14 (2001) 407±425 425


